Banach-Colmez spaces

Arthur-César Le Bras

Banach-Colmez spaces were introduced by Colmez in [1] (under the name " $Espaces\ de\ Banach\ de\ Dimension\ Finie$ ") almost fifteen years ago to give a new proof the conjecture "weakly admissible implies admissible" in p-adic Hodge theory. The goal of the talk was to show why they are important and ubiquitous.

Let C be the completion of an algebraic closure of \mathbf{Q}_p . Let Perf_C be the category of perfectoid spaces over C, and $\mathrm{Perf}_{C,\mathrm{proet}}$ be the big pro-étale site of C (the above category endowed with the pro-étale topology). We will look at presheaves on the category Perf_C with values in the category of \mathbf{Q}_p -topological vector spaces, which are sheaves on $\mathrm{Perf}_{C,\mathrm{proet}}$ when viewed simply as presheaves of \mathbf{Q}_p -vector spaces. Such a functor \mathcal{F} is called a $\mathit{Banach sheaf}$ when $\mathcal{F}(X)$ is a Banach space for all affinoid perfectoid X. Here are two simple examples of Banach sheaves : the constant sheaf \underline{V} , for any finite dimensional \mathbf{Q}_p -vector space V; the sheaf $W \otimes_C \mathcal{O}$, for any finite dimensional C-vector space W.

The following definition looks a bit different from Colmez's one, but is actually equivalent.

Definition 0.1. An effective Banach-Colmez space is a Banach sheaf \mathcal{F}' which is an extension ¹

$$0 \to V \to \mathcal{F}' \to W \otimes_C \mathcal{O} \to 0$$
,

V (resp. W) being a finite dimensional \mathbf{Q}_p -vector space (resp. a finite dimensional C-vector space). A Banach-Colmez space is a Banach sheaf \mathcal{F} which is a quotient

$$0 \to V' \to \mathcal{F}' \to \mathcal{F} \to 0$$
.

where \mathcal{F}' is an effective Banach-Colmez space and V' a finite dimensional \mathbf{Q}_p -vector space. The category of Banach-Colmez spaces will be denoted \mathcal{BC} .

To any presentation of a Banach-Colmez space as in the definition, we associate two integers: its $dimension \dim_C W$ and its $height \dim_{\mathbf{Q}_p} V - \dim_{\mathbf{Q}_p} V'$.

The definition of the category of Banach-Colmez spaces may look a bit strange, but Colmez proved the following difficult theorem ([1]).

Theorem 0.2. The category \mathcal{BC} is an abelian category. The functor $\mathcal{F} \mapsto \mathcal{F}(C)$ is exact and conservative on \mathcal{BC} .

Moreover, the functions dimension and height do not depend on the presentation and define two additive functions on \mathcal{BC} .

]

^{1.} By definition, a sequence of Banach sheaves is said to be *exact* if it is so as a sequence of sheaves of \mathbf{Q}_p -vectors spaces on $\mathrm{Perf}_{C,\mathrm{proet}}$.

At this point it is not clear that there exist interesting examples of Banach-Colmez spaces apart the obvious ones. To construct geometrically such examples, one can use p-divisible groups, as was observed by Fargues ([2]). Let G be a p-divisible group over \mathcal{O}_C . Its universal cover \tilde{G} is the sheaf which associates to any perfectoid algebra R over C the \mathbf{Q}_p -vector space

$$\tilde{G}(R) = \varprojlim_{\times p} \varprojlim_k \varinjlim_n G[p^n](R^{\circ}/p^k).$$

This sheaf is representable by a perfectoid space over C. For example if $G = \mathbf{Q}_p/\mathbf{Z}_p$, $\tilde{G} = \mathbf{Q}_p^2$. In general, one has an exact sequence of pro-étale sheaves

(1)
$$0 \to \underline{V(G)} \to \tilde{G} \xrightarrow{\log_G} \text{Lie}(G)[p^{-1}] \otimes \mathcal{O} \to 0,$$

V(G) being the rational Tate module of G. As moreover $\tilde{G}(R)$ is a Banach space for any perfectoid C-algebra R, this exact sequence shows that universal covers of p-divisible groups are examples of effective Banach-Colmez spaces! Actually, one can prove the following result

Theorem 0.3. Universal covers of p-divisible groups over \mathcal{O}_C are Banach-Colmez spaces and any Banach-Colmez space is the quotient of the universal cover of a p-divisible group by the Banach-Colmez space \underline{V} associated to some finite dimensional \mathbf{Q}_p -vector space V.

This result has two consequences. The first one is the

Corollary 0.4. Banach-Colmez spaces are diamonds over $\operatorname{Spa}(C^{\flat})^3$.

The deep results of Fargues [2] and Scholze-Weinstein [4] on p-divisible groups allow to describe universal covers in terms of p-adic Hodge theory. The second consequence of the theorem is thus that one can get many explicit examples of Banach-Colmez spaces by playing with Fontaine rings. Here is an example : for any $\lambda = d/h \in \mathbf{Q}$, $\lambda \geq 0$, the functor $\mathbf{U}_{\lambda} : R \mapsto B_{\mathrm{cris}}^+(R^{\circ})^{\varphi^h = p^d}$ is a Banach-Colmez space. For instance, $\mathbf{U}_1 = \tilde{\mu}_{p^{\infty}}$ and the exact sequence (1) for $G = \mu_{p^{\infty}}$ evaluated on C becomes identified with the famous exact sequence

$$0 \to \mathbf{Q}_p.t \to (B_{\mathrm{cris}}^+)^{\varphi=p} \xrightarrow{\theta} C \to 0.$$

To completely elucidate the nature and the structure of the category \mathcal{BC} , we now turn to the relation with the Fargues-Fontaine curve X (for $E = \mathbf{Q}_p$, $F = C^{\flat}$).

$$\operatorname{Coh}^{0,-}(X) = \{ \mathcal{F} \in D(X), H^i(\mathcal{F}) = 0 \text{ for } i \neq -1, 0; H^{-1}(\mathcal{F}) < 0, H^0(\mathcal{F}) \geq 0 \},$$

^{2.} This sheaf is representable by the perfectoid space $\operatorname{Spa}(\mathcal{C}^0(\mathbf{Q}_p,C),\mathcal{C}^0(\mathbf{Q}_p,\mathcal{O}_C))$.

^{3.} Here we implicitely identify $\operatorname{Perf}_{C,\operatorname{proet}}$ with $\operatorname{Perf}_{C^{\flat},\operatorname{proet}}$, using Scholze's equivalence.

where D(X) is the bounded derived category of the abelian category $\operatorname{Coh}(X)$ of coherent sheaves on X, and where for $\mathcal{E} \in \operatorname{Coh}(X)$, the notation $\mathcal{E} \geq 0$ (resp. $\mathcal{E} < 0$) means that all the slopes of \mathcal{E} are non negative (resp. negative). This full subcategory of D(X) is actually an abelian category (this is a consequence of the general theory of *tilting* and *torsion pairs*), and is endowed with a degree function $\operatorname{deg}^{0,-}$ and a rank function $\operatorname{rk}^{0,-}$.

For any perfectoid space S over C^{\flat} , there exists a relative version X_S of the curve (for $S = \operatorname{Spa}(C^{\flat})$, this is just the usual Fargues-Fontaine curve X). Although there is no morphism of adic spaces $X_S \to S$, one has a morphism of sites τ from $\operatorname{Perf}_{C^{\flat}, \operatorname{proet}}$ to the big pro-étale site of X. In particular, one can associate to any complex of coherent sheaves \mathcal{F} on X a sheaf $R^j\tau_*\mathcal{F}$ on $\operatorname{Perf}_{C^{\flat}, \operatorname{proet}}$, for any $j \geq 0$.

Theorem 0.5. The functor $R^0\tau_*$ induces an equivalence of categories

$$\operatorname{Coh}^{0,-}(X) \simeq \mathcal{BC}.$$

Under this equivalence the functions $\deg^{0,-}$ and $-\mathrm{ht}$ (resp. $\mathrm{rk}^{0,-}$ and \dim) correspond to each other.

For example, $R^0\tau_*$ sends \mathcal{O}_X to \mathbf{Q}_p , $i_{\infty,*}C$ to \mathcal{O} , and $\mathcal{O}_X(-1)[1]$ to \mathcal{O}/\mathbf{Q}_p . This result gives a precise meaning to the idea that all Banach-Colmez spaces can be obtained by using H^0 and H^1 of coherent sheaves on the Fargues-Fontaine curve. It also shows that the category \mathcal{BC} only depends on C^{\flat} .

Using this result and the corollary 0.4, one can show that automorphism groups of vector bundles on X are diamonds: see [3, Prop. 2.5]. For example, $\mathcal{A}ut(\mathcal{O}_X^n) = GL_n(\mathbf{Q}_p)$ (and not the algebraic group GL_n !). This point is important for Fargues's conjecture.

Références

- [1] P. Colmez, Espaces de Banach de dimension finie, J. Inst. Math. Jussieu 1 (2002), 331-439.
- [2] L. Fargues, Groupes analytiques rigides p-divisibles, To appear in Math. Annalen.
- [3] L. Fargues, Geometrization of the local Langlands correspondence: an overview, Preprint (2016).
- [4] P. Scholze and J. Weinstein, Moduli of p-divisible groups, Cambridge Journal of Mathematics 1 (2013), 145–237.